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ABSTRACT

Research in experimental fluid dynamics requires methods for recovering velocity vector

fields from within fluid flow experiments. A widely used method, Particle Image Velocime-

try (PIV), analyzes video images of fluorescent particles moving in fluids. Various computa-

tional approaches have been applied to PIV, such as traditional cross-correlation, variational

analysis, and most recently, machine learning (ML). We describe here a novel ML approach

to PIV based on deep learning, with the goal of more accurately and efficiently estimating

the dense 2D velocity field for each frame of a PIV video. Our approach is distinguished

by how it flexibly uses multiple frames earlier and later in time, rather than only pairs of

frames. We show that on a variety of images and flow fields, our deep learning PIV approach

is competitive with other state-of-the-art methods. We also describe a software tool for syn-

thesizing PIV images from known velocity fields for ML training, which will benefit future

research on ML-based PIV.
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CHAPTER 1

INTRODUCTION

With the development of machine learning, many research areas have been transformed from

using classical methods which require a large amount of domain expertise and careful en-

gineering, to learning systems that learn from vector representations of the raw data [16].

Such innovations have motivated novel research in many areas, ranging from face recognition

in security systems [29], to product recommendations on e-commerce websites [5]. However,

it has been less actively explored within scientific applications, such as Particle Image Ve-

locimetry (PIV), which is a non-intrusive velocity measurement tool that extracts velocity

fields from sequential particle images.

PIV is an important tool that physicists use to understand experimental (as opposed to

computer-simulated) results in fluid dynamics. Complex flow phenomena, such as turbu-

lence and vortex interactions, continue to present interesting research questions, which may

be answered in part with improvements in the accuracy and efficiency of PIV algorithms. A

typical PIV experiment consists of three steps. The first step introduces small particles that

do not interfere with the flow motions into the flow medium. These particles are then illumi-

nated by a laser sheet and captured by a camera, which generates successive particle images

as time goes. The third step is to analyse these particle images and recover the underlying

velocities from particle movements [24]. Our work here focuses on the computational aspects

of the third step.

The contributions of this work can be summarized as follows.

1. We design a novel deep learning framework, named Memory-PIVnet, that utilizes

a larger time window instead of being restricted to image pairs. The network uses

a memory-based backbone, which consists of both Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN) to extract the features both spatially

and temporally, and then use these features to predict the flow motions in a coarse-to-
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fine fashion. Experiments show that the results of our model achieves state-of-the-art

performance in solving PIV.

2. We develop a software tool that generates high-quality, long-sequence particle images

from existing velocity fields, in contrast to existing work where image pairs is the only

format. Besides providing training datasets for our model, it could be a very useful

tool for future researchers to develop innovative PIV algorithms that does not only use

image pairs.

The structure of this paper is as follows. Chapter 2 discusses previous work that has

been dedicated to improve PIV. Chapter 3 explains in details how we designed our novel

deep learning network, Memory-PIVnet, that uses multiple frames earlier and later in time,

instead of only pairs of frames; Chapter 3 also introduces the software tool which generates

synthetic particle images from existing velocity fields; Chapter 4 shows that our method

achieves superior results when evaluated on synthetic datasets, compared to existing state-of-

the-art PIV algorithms; Chapter 5 discusses ablation studies regarding several design choices

that we made for our network, and how different designs impact our model’s performance;

Finally, Chapter 6 concludes by discussing various directions of future work.
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CHAPTER 2

RELATED WORK

Although PIV originated in physics, it has long utilized techniques from image processing

and computer vision. Methods in two main categories, cross-correlation (CC) [30] and vari-

ational optical flow [6], comprise a large portion of classical PIV solvers. In general, the

CC-based methods calculate the cross-correlation between two interrogation windows from

image pairs, and use the maximum correlation to compute the particle displacement vectors.

These methods are efficient and easy to implement. However, they can only output velocity

fields that have much lower resolution compared to the input images, and requires proper

postprocessing to remove outliers [31], which makes it insufficient for today’s studies that

require a dense velocity field, at or near the resolution of the input image.

On the other hand, variational optical flow methods, studied intensively by the com-

puter vision community, transform the problem into a optimization problem [7]. Their suc-

cess depends on minimizing a well-chosen objective function. These approaches, unlike the

CC-based methods, can provide dense field outputs. However, the process is usually compu-

tationally intensive. A more detailed comparison between cross-correlation and variational

optical approaches can be found in [19].

Beyond the classical approaches, newer PIV methods have incorporated machine learn-

ing, based on the success deep learning has had with solving optical flow problems, which are

similar to PIV. For example, Fischer et al. designed a network structure, FlowNet, which is

capable of solving optical flow estimation as a supervised learning task [4]. FlowNet2, which

is a cascaded version of the original FlowNet, was soon introduced to achieve higher accuracy

with the cost of larger computation time [12]. Sun et al. later present PWC-Net that uses

pyramidal processing, warping and cost volume to achieve a better performance while keeping

the model 17 times smaller in size than the FlowNet2 [26]. Hui et al. introduced a sequence

of work, namely LiteFlowNet [10], LiteFlowNet2 [9] and LiteFlowNet3 [8], which outper-

form FlowNet2 while keeping the computation time low. Besides these, other approaches
3



which utilize spatial-channel attention maps [33] and recurrent neural networks [28] also

provide comparative or better results. Although these methods have achieved state-of-the-

art performance in estimating optical flow, they cannot be directly used to solve PIV and

achieve comparable performance, because particle images have very different characteristics

compared to typical video images. All PIV images contain a dense field of highly visually

similar particles, which poses challenges for the optical flow methods mentioned above to

efficiently find corresponding object pairs between adjacent images. PIV also seeks a higher

level of spatial resolution on the output velocity field that is required of optical flow analysis.

Nevertheless, the relative success of these approaches have encouraged further exploration

of deep learning for PIV.

The first proof-of-concept work to combine PIV with deep learning was in 2017, in

which Rabault et al. built a model with Convolutional Neural Networks (CNNs) and fully

connected neural networks (FCNNs) for performing end-to-end PIV [23]. Although the pro-

posed method at that time did not outperform state-of-the-art CC-based methods, it opened

up a new way for others to continue the study. Soon after that, Lee et al. [17] developed

a convolutional PIV, named PIV-DCNN, based on a cascaded network structure that has

been developed originally for facial recognition [27]. PIV-DCNN takes two particle images

as a paired input and outputs a velocity field with improved spatial resolution and compa-

rable accuracy to classical PIV approaches. However, the computational efficiency remains

a weakness. Cai et al. [3][2] proposed two models, one is based on the FlowNet [12] while

the other is based on the LiteFlowNet [10]. Cai et al. modified the original network with

more deconvolution layers, unbalanced weighting coefficients and a normalization step on

each level’s estimated flow to make them better suited for PIV. Their approaches achieved

similar accuracy compared to state-of-the-art methods with better computational efficiency.

However, as these approaches are modified versions of existing network structures developed

originally for optical flow, we believe a novel deep learning framework designed from scratch

for PIV could further improve the results.
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In addition to the supervised learning approaches mentioned above, other deep learning

techniques have also been lightly explored. Zhang et al. proposed an unsupervised learning

method which is also based on the LiteFlowNet structure [34]. They developed a loss function

consist of a photometric loss between an image pair, a consistency loss in bidirectional flow

estimates and a spatial smoothness loss. This unsupervised approach fills the gap between

the training set-ups and real-world scenarios that most supervised methods suffer, but is left

behind in terms of flow estimation accuracy.

All the above existing approaches recover velocity vectors only from pairs of images

adjacent in time. However, since turbulent fields have the nature of being rapidly changing

at some areas while being relatively quiet at other areas, using an image pair as the only

input for flow estimation poses problem for a uniform level of performance across the entire

spatial domain. Therefore, our idea of solving PIV originates from finding the best way to

utilize multiple frames of particle images instead of merely two, to get better results in low

velocity areas.

One previous method has been designed to address this non-uniform performance concern

as part of Cross-Correlation analysis. Wieneke et al. proposed an adaptive PIV method by

varying the size of the interrogation windows based on flow gradients [32]. Their method

demonstrates improvements in both accuracy and spatial resolution, which inspires us to

explore further in the path of adaptive algorithms. However, instead of adopting a similar

strategy that, for example, chooses the best two frames adaptively out of a larger time

window, we utilize a memory-based network that extracts the features in both temporal and

spatial domain, so that the network can learn what would be the most important features

to use when estimating the velocity field. Such memory network, compared to the adaptive

algorithms that choose the best two frames, enjoys the benefit of having pixel-level freedom.

Integrating memory units with neural networks has been a long-term development in

the history of deep learning. Among many approaches, multigrid neural memory [11] is

especially interesting as it is capable of learning and processing data on both spatial and
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time scales, while keeping high computational efficiency. It also promotes implicit internal

attention, which works with our intuition that different time frames should be responsible

for flow estimations on different areas within the field of view.

Multigrid neural memory utilizes convolutional long short-term memory (ConvLSTM) [25]

to process the data in a time-dependent way, which was designed initially to learn the long-

term dependencies. In our case, series of particle images can be either a long or short

time-dependent dataset. However, using such ConvLSTM-based memory structure is su-

perior to using memory structures that are only capable of short-term memory, because it

provides the capability to explore various lengths of time windows in the future. Existing ex-

periments [21] also shows that long-term memory delivers better performance when trained

and tested with shorter series.
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CHAPTER 3

METHODS AND RESULTS

As mentioned in Chapter 2, our novel network structure, Memory-PIVnet, utilizes a multigrid

neural network backbone to extract features from multiple frames of particle images. By

manually setting a time window, and re-initializing the internal memory stage every length

of the time window, the network can be trained as if it is on the short series of images. On

the other hand, if the internal memory stage is never re-initialized, it is then equivalent to

training on long series of images.

Memory-PIVnet allows us to flexibly explore the role of varying time windows and the

benefit of memory in realistic PIV settings. It is reasonable to assume that the particle

image at one time t = 0 will have no bearing on the velocities at a far later time t = 100

(as compared to the characteristic time scale of the flow). This suggests using small time

windows via repeated memory re-initialization. But it is also reasonable to expect that a

network without such memory re-initialization will, with sufficient training, learn by itself

that the features from t = 0 should not be used for estimation at t = 100. In this work, we

use term amnesia to indicate the type of memory network where its internal memory get re-

initialized after a certain number of frames; and use term non-amnesia to represent the type

of memory network where its internal memory never gets re-initialized. The performance of

these two training schemes are explored and discussed in Section 5.2.

The remainder of Chapter is structured as follows. Section 3.1 illustrates the network

structure of our Memory-PIVnet. More specifically, Section 3.1.1 shows the memory-based

backbone structure, and Section 3.1.2 discusses the flow estimation network, which uses the

extracted features to estimate the dense velocity field of each particle image.

Section 3.2 shows how the data is prepared and generated for training our model. The

process utilizes the software tool that we developed, as mentioned earlier in Chapter 1. We

break down and discuss each of its components in this section.

Considering that particle images can be huge in size and the physical GPU memory is
7



limited, to make the model work with all sizes of images on normal GPUs, a tiling technique

is developed and illustrated in Section 3.3. The technique consists of two parts, dividing

the full image into smaller patches before feeding into the model, and stitching together the

velocity fields resulting from each patch as final output. Concerns regarding eliminating the

discontinuities that exist in the boundaries between individual tile velocity field is discussed

in Section 3.3.1 and 3.3.2.

3.1 PIV Estimation with Memory-PIVnet

In this section, we introduce our novel deep learning model, Memory-PIVnet, that is designed

to improve the PIV performance via neural networks. A high-level visualization of the

network architecture is shown in Figure 3.1. The model architecture could be split into

two sections; a memory-based backbone (top), and a coarse-to-fine flow estimation network

(bottom), which are discussed in Subsection 3.1.1 and 3.1.2 respectively.

Figure 3.1: Memory-PIVnet network architecture; top section: memory-based backbone;
bottom section: flow estimation network
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3.1.1 Memory Network

Multigrid memory network consists of a series of multigrid memory layers, where each layer

is crafted with multigrid convolutional layers [14] and convolutional long short-term memory

(ConvLSTM) [25]. Such memory layers are abbreviated with name “MG-conv-LSTM” in our

network structure diagram as shown in Figure 3.2. For detailed network structures inside

the memory layer, we refer readers to [11] for more details.

Figure 3.2: Memory network of Memory-PIVnet

Memory layers are able to process and mix data in both spatial and time domain. Each

memory layer at time t and layer n takes previous time step, corresponding layer’s outputs,

ht−1,n and ct−1,n, along with current time step, previous layer’s outputs, xt,n−1,k, where

k is the level of inputs within one step (different spatial resolution inputs), to generate

current time step, current-layer outputs, xt,n,k. It determines, at each spatial resolution,

what previous and current information to keep, just like the performance of normal LSTM,

while blending features across all resolution levels. LSTM equips the network with ability to

analyse and extract features from a chunk of data that spans across a larger time window,

which serves the idea to design an adaptive PIV method that uses features extracted from

different time steps to aid PIV estimation.

Suppose that we are estimating flow for frame xt0 , using a time window with length T ,

where T is an odd number, the input data includes images {xts , tts+1, . . . , xt0 , . . . , xte−1, xte},

where ts = t0 − ⌊T2 ⌋ and te = t0 + ⌊T2 ⌋. The memory network processes this image block in
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a frame by frame fashion, and the final extracted feature is generated after processing the

last frame xte . The final features will then be used to estimate the flow for frame xt0 . In

other words, Memory-PIVnet performs flow estimation in a target-delay fashion, where the

current estimation is for the image a few time steps ago. To support this training scheme,

input data has been padded with ⌊T2 ⌋ frames to the front of the first frame and after the

last frame. We choose to use the repeat of first frame for the front padding and the repeat

of last frame for the end padding.

3.1.2 Flow estimation network

The flow estimation network predicts vector fields in an iterative coarse-to-fine manner, as

shown in Figure 3.3. Extracted features with different resolutions, are first fed into a post-

process CNN, which consists of one convolutional layer followed by a batch normalization [13]

and a Leaky ReLU [20]. The post-process CNN helps further increase the number of channels

that the extracted features have, which is cheaper than increasing the number of channels

inside the memory network. Next, the outputs of the post-process CNN are fed into the

flow estimation CNN, where its detailed structure is shown in Figure 3.4. For each level,

except for the last (bottom) level, the estimated flow of the current level is up-sampled

through a trainable deconvolution and padded with the next-level’s (lower-level) outputs of

its post-process CNN to generate the next-level estimated flow. As the extracted features

coming from the memory network naturally have higher resolutions each level lower, they

are designed to aid the flow estimation for a higher resolution, thus support the name of

coarse-to-fine fashion.

3.2 Data generation

In this section, we demonstrate our data preparation pipeline that generates consecutive

particle images from synthetic velocity fields in details. Synthetic velocity field is commonly

10



Figure 3.3: Flow estimation network of Memory-PIVnet

Figure 3.4: Flow estimation CNN detailed structure

simulated on a xrange × yrange × zrange grid, where the velocities are stored every ∆tdata

seconds. Since velocity field can be stored at a different frequency than generating particle

images, in our pipeline we use ∆timage, to distinguish this and represent the time gap between

two consecutive particle images.

When introducing seeds into the synthetic flow fields, unlike existing PIV datasets [3]

that consist of image pairs, extra strategies need to be applied to avoid the particles from

gathering unevenly too much or exiting the field of view as time evolves for a longer period.

Because these would make particle images contain too many blank or sparsely filled areas

that are less useful for flow estimation. Here we propose a novel scheme where each seed’s

initial information is padded with a time step, which represents the initial time when this

seed is introduced into the medium, in addition to the spatial locations. In other words, each

point p is a four-vector p = {x, y, z, t}, where x, y and z are randomly initialized (drawn

from a uniform distribution) from the spatial domain while t is from the time domain (length

of the video). Each seed, although initialized at time t, is allowed travel in both directions
11



of time until it gets out of the spatial or time range, whichever comes first.

Experimental particle images display randomness and noises on how particles are present

on images. To mimic this, we generate synthetic images with the following cosmetic settings

in mind.

• Particle radius

The actual size of each particle differs from each other due to unavoidable manufacture

imperfections. To account this, the radius of each particle in our synthetic particle

images is drawn from a Gaussian distribution with µ = 1.5 pixel, σ = 0.5 pixel, and

truncated with finite support between 10−9 and 5.

• Particle luminosity

Different seeds are illuminated differently as they are closer to or further away from

the illuminated laser sheet. Seeds are assigned with different intensities based on their

z positions compared to the z position of the illuminated slice, z0. More specifically,

we assign the peak luminosity using equation 3.1. We also set a spatial range in z

direction as a visible bandwidth, which is set to be 60% of the total z range. Particles

that are outside of this z range will not be shown in the particle images.

luminosity = exp
−8× (z − z0)

2

L2
(3.1)

where L represents the laser thickness and equals to 20 pixels by default

• Noise from physical process of acquisition

A Gaussian blur with µ = 0, σ = r/2, where r is the radius of the particle, is applied

to each particle to simulate the noise existing in real world experiments.

Another place that our pipeline differs from the existing work is the measurement unit

in point density. Prior work by Cai et al. uses points per pixel (PPP) to indicate the

particle density, which is only meaningful when every frame has roughly the same number

12



of particles [3]. This measurement works for image-pair datasets, where almost all points

initialized in the first image will also be in the second image. Because the total time interval

is very small, which makes it less likely that particles would drift out of the spatial ranges.

However, in our case, since the time interval is long, seeds might go out of the spatial

range before reaching the end of the time interval. Therefore, we propose a new seed density

measurement unit, points per frame (PPF), which equals to the total number of points

N that are introduced throughout the entire time interval T divided by T , as shown in

Equation 3.2. Notice that PPF does not indicate the expected number of particles that an

image contains. Instead it provides a lower bound which means that at anytime, an image

is expected to contain at least PPF number of particles.

Points Per Frame (PPF) = N

T
(3.2)

Throughout the experiments of this work, we used particle images with 10000, 50000, and

100000 total seed counts, which correspond to 39.68, 198.41, and 396.83 PPF respectively.

Examples of the generated particle images are showed in Figure 3.5.

Figure 3.5: Particle images with point density = 39.68 (left), 198.41 (middle), and 396.83
(right) PPF respectively
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3.3 Tiling and Boundary Elimination

Real-world particle images can be very large, sometimes as high-resolution as 4096 × 4096.

Fitting these images without any tiling poses a huge challenge for current processing units,

namely Graphics Processing Units (GPU). Although modern top-tier GPUs are having more

video memory on a yearly basis, as well as both model and data parallelism are becom-

ing easier thanks to machine learning libraries such as PyTorch [22], it is still beneficial,

and often easier to develop a tiling strategy, that splits the original high resolution image

into tiles, performs flow estimation on individual tiles, and stitches the results at the end.

However, a huge downside of the tiling approach is that boundaries between tiles can pro-

duce discrepancies and hurt the continuity of the vector fields, which we call as boundary

effect. To help eliminate such boundary effect, we propose two methods; margin padding

and bi-linear interpolation blending. Margin padding utilizes the fact that memory layers

blend data across different resolutions. It feeds the network with input tiles padded with

surrounding information, while asking for estimation only on the center part of the input

tiles. Bilinear interpolation, on the other hand, is a standard post-processing method that

has been applied widely in image resembling.

3.3.1 Margin padding

By default, the size of the margin is set to match the size of the center area. In our experi-

ments, original particle images have dimension 256 × 256, and are divided into 16 tiles per

image, where each tile has size 64 × 64. The margins on each side have length 32, which

bring the size of the padded tiles up to 128 × 128. Figure 3.1 shows the input-output rela-

tionship with margin padding; the input frame has spatial dimension being 128× 128, while

the resulting flow estimation has size 64 × 64, which matches the dimension of the center

area of the input tile (center area is highlighted in yellow). The strategy, although making

the training more time-consuming, is able to let the network get access to a broader area of
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the tiles when making flow predictions. Despite the largest-dimension features are dropped

during flow estimation for the sake of computational efficiency, the neighboring information

has been infused into lower-level features blocks. Because the memory layers blend higher

spatial resolution information into lower level’s, which is the key to why this margin padding

strategy works. A visualization regarding the improvements that margin padding makes is

showed in the middle of Figure 3.7.

3.3.2 Bilinear interpolation blending

Bilinear interpolation has been widely applied in image stitching and upsampling. It esti-

mates a new pixel value by using the distance weighted average of the four nearest pixels.

This idea is borrowed and slightly modified to eliminate the boundary effect as a post-

processing aid to our final estimation results. As showed in Figure 3.6, suppose ABCD is

one tile, which consists of 4 sub-tiles 6, 7, 10 and 11, boundary effect happens at AB, AC,

BD and CD. And there is no vector discontinuity inside the tile ABCD. Therefore, we

divide the tile further into 4 sub-tiles, and perform bilinear interpolation blending on each

sub-tile. We demonstrate our method based on sub-tile 6, but the same technique applies to

all the sub-tiles.

To apply bilinear interpolation blending on each pixel of sub-tile 6, instead of using its

geographical nearest pixels as used in the original version of bilinear interpolation, we obtain

these “nearest” pixels through inference results from other tiles. Namely, tile {1, 2, 5, 6},

{2, 3, 6, 7}, {5, 6, 9, 10} and {6, 7, 10, 11}, which are indicated in red, yellow, blue and green

respectively in Figure 3.6. Inside sub-tile 6, the pixel closed to boundary AB should receive

a blended value with higher weight from tile red and yellow, because no boundary effects

happen inside tiles.

Therefore, let r and s be the horizontal and vertical axis as showed in Figure 3.6, the
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Figure 3.6: Bilinear interpolation blending in boundary removal

pixel value at location (r, s), where r, s ∈ [0, 1] can be calculated as

I(r, s) = (1− r)(1− s)Ired + r(1− s)Iyellow + (1− r)sIblue + rsIgreen (3.3)

where Ired, Iyellow, Iblue and Igreen are the corresponding estimated pixel values from tile

{1, 2, 5, 6}, {2, 3, 6, 7}, {5, 6, 9, 10} and {6, 7, 10, 11} at location (r, s). The resulting velocity

fields are showed in the bottom of Figure 3.7.
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Figure 3.7: Boundary elimination; Top: boundary effects without margin padding or bi-
linear interpolation blending; Middle: boundaries are smoothed by margin padding; Bottom:
boundaries are removed completely after both margin padding and bilinear interpolation
blending.
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CHAPTER 4

EVALUATION RESULTS ON SYNTHETIC DATASETS

We compare here our proposed Memory-PIVnet to recent learning-based approaches and

to traditional variational optical flow. We use the Johns Hopkins Turbulence Database

(JHTDB) [18] for our experiments. JHTDB provides numerous types of turbulence simu-

lations using Direct Numerical Simulation (DNS), a state-of-the-art technique to simulate

turbulent flow fields. We demonstrate the results on two distinct types of turbulence: forced

isotropic and and forced magneto-hydrodynamic. The training and testing datasets con-

sist of particle images and ground truths obtained from our software tool as discussed in

Section 3.2.

4.1 Forced Isotropic Turbulence

This dataset records a simulation of forced isotropic turbulence on a 10243 grid with periodic

boundary conditions, via numerical solution of incompressible Navier-Stokes equations [15].

Time integration of the viscous term is done analytically using integrating factor, where data

are stored every 10 DNS steps, which equal to 0.002 seconds. In other words, ∆tdata = 0.002,

which results in a total of 5028 data frames for the entire simulation.

We divide the 10243 grid into 1024×1024×101 chunks, down-sampled in x and y domain

so that the dimension becomes 256×256×101, and took the center 4 chunks. Particle images

are generated every 20 data time-steps throughout the entire 5028 data frames, which means

that adjacent particle images have a time-step ∆timage = 0.04 seconds. In total, 252 images

are generated for each sequence.

When training the proposed Memory-PIVnet, if not otherwise mentioned, the time-

window is set to 5 by default, which means that 5 images are padded along the time axis. The

model predicts velocity field for the center frame. We use tiling to fit the model and data in

normal consumer-level GPUs (ours with ≈ 10G of video memory), so each 256×256 image is
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divided into 16 64× 64 tiles. Margin padding is applied as discussed in Section 3.3.1, where

the neighboring pixels around the center 64 × 64 tile is padded to help eliminate the final

boundary effect. The actual training and testing blocks then have dimension 128× 128× 5.

Among all the sequences, 3 sequences are used for training, and 1 is used for testing. In

other words, 12096 blocks/samples are used for training while 4032 were used for testing.

During testing, the tiles were stitched back from 16 64× 64 tiles of predicted velocity fields

to a single 256× 256 velocity field. Then the result is blended as discussed in Section 3.3.2

to be the final result and used to calculate the error as well as shown in flow visualizations.

Consecutive particle images are converted to image pairs when training (if needed) and

testing the existing pairwise-based methods, which include the previously mentioned PIV-

LiteFlowNet-en [2], Un-LiteFlowNet [34], as well as the Horn-Schunck method (HS) [7]. The

experiments include 3 sets of particle images that have been simulated with different seed

densities. The average root mean square error (RMSE) of all the approaches are summarized

in Table 4.1, while the individual RMSE of each testing sample is illustrated in Figure 4.1.

Density ρ
Methods HS PIV-LiteFlowNet-en Un-LiteFlowNet Memory-PIVnet

39.68 0.13044 0.10625 0.12408 0.07298
198.41 0.15877 0.10837 0.10145 0.05635
396.83 0.15779 0.10276 0.09675 0.05314

Table 4.1: Mean RMSE (unit: pixel) of different approaches on Forced Isotropic Turbulence
particle images simulated with different seed densities (unit: ppf)

In addition, a set of visualizations of the ground truth velocity fields as well as the

predicted fields are showed in Table 4.2. The 2D velocity fields are encoded in HSV colorwheel

proposed by S. Baker et al. [1].

4.2 Forced Magneto-Hydrodynamic (MHD) Turbulence

This turbulence dataset is a numerical simulation of the incompressible MHD equations.

Like the isotropic turbulence data in the previous section, it is simulated on a 10243 periodic
19



Methods Ground truth Prediction Avg. Endpoint Error

The Horn-
Schunck

PIV-
LiteFlowNet-

en

Un-
LiteFlowNet

Memory-
PIVnet

Table 4.2: Visualized ground truth, estimated velocity fields and average endpoint error
(AEE) plots from The Horn-Schunck, PIV-LiteFlowNet-en, Un-LiteFlowNet, and Memory-
PIVnet on Forced Isotropic turbulence dataset.
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Figure 4.1: Individual RMSE (unit: pixel) of different approaches with each Forced Isotropic
Turbulence particle image simulated with seed density ρ = 39.68(left), ρ = 198.41(middle)
and ρ = 396.83(right) (unit: ppf)

grid, with the same corresponding spatial domain in the world space. The 2nd-order Adams-

Bashforth, with viscous and resistive terms solved analytically by an integrating factor, is

used to solve the time integration scheme. The simulation time-step (DNS step) is 0.00025

seconds, while data is stored every 10 DNS steps, i.e. ∆tdata = 0.0025. 1024 time samples

are saved for the entire simulation.

As before, the 10243 grid is divided into 1024× 1024× 101 slices, and down-sampled to

256×256×101. 9 of such slices are taken. Particle images are generated every 20 data time-

steps throughout the 1024 data frames, which makes ∆timage = 0.05 seconds. 52 images are

generated for each sequence. The length of the time window for Memory-PIVnet is again

kept at 5, which is the same as the previous experiment. The tiling operation is also the
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same as before. Among all the sequences, 8 sequences are used for training, and 1 is used for

testing, which makes 3328 blocks/samples for training while 416 for testing. During testing,

the tiles were stitched together and blended the same way as discussed in Section 4.1 to

produce the final result.

Image pairs are generated from the same underlying velocity fields to serve the purpose of

training (if applicable) and testing current image pair based methods. Average and individual

RMSE of all the approaches are illustrated in Table 4.3 and Figure 4.2 respectively.

Density ρ
Methods HS PIV-LiteFlowNet-en Un-LiteFlowNet Memory-PIVnet

39.68 0.07585 0.02527 0.03738 0.02184
198.41 0.07107 0.02390 0.03428 0.02234
396.83 0.07203 0.02412 0.03388 0.02116

Table 4.3: Mean RMSE (unit: pixel) of different approaches on Forced Magneto-
Hydrodynamic (MHD) Turbulence particle images

4.3 Discussion

In previous sections, evaluations and accuracy comparisons between Memory-PIVnet and

other methods are illustrated. However, our results support only relative, not absolute,

comparisons between the accuracies of the methods, because the particle images contain less

information than the underlying (downsampled) velocity field. Parts of the image sparsely

populated by particles are not expected to contain sufficient information for any algorithm

to predict its underlying velocity field, so even the perfect PIV solver could not achieve 100%

accuracy. We believe there is thus a theoretical upper bound on the attainable accuracy of a

PIV method relative to a turbulent vector field ground truth. This bound has not yet been

estimated within the current scope of our work (see Section 6.2).
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Figure 4.2: Individual RMSE (unit: pixel) of different approaches with each Forced
Magneto-Hydrodynamic (MHD) Turbulence particle image simulated with seed density
ρ = 39.68(left), ρ = 198.41(middle) and ρ = 396.83(right) (unit: ppf)
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CHAPTER 5

ABLATION STUDY

The core idea of this work is to utilize a larger time window to improve the accuracy in

solving PIV. To achieve this, a network structure consist of memory network and multi-level

flow estimation network are proposed and tested. However, it remains unanswered that how

would the network perform with different lengths of time windows? And does it matter or not

to keep a persistent memory stage of the memory network during the entire image sequence?

In other words, should the memory network be amnesia or non-amnesia? Therefore, in this

chapter, we present an ablation studies that explore these questions.

5.1 Different Lengths of Time Windows

To experiment with different time windows, we use the particle images generated from the

forced isotropic turbulence with simulation seed density ρ = 39.68, as used in Section 4.1.

Time windows include T = {2, 3, 5, 7, 9}. Note that when T = 2, only a pair of images are

used during training and testing. This contradicts with our idea that knowing both the past

and future frames would be helpful. However, this setting puts an equal relationship on the

data needed per inference between our method and other existing work.

Throughout this experiment, the network structure is kept the same as introduced in

Section 3.1, with the only change being the length of the time window. Although smaller time

windows result in a less complex model, which consumes less memory on GPU, and makes

the tiling strategy less necessary, to keep the experiments an apple-to-apple comparison with

as few difference as possible, the tiling and stitching scheme is preserved even if they are not

strictly required.

We demonstrate the average RMSE results as well as the individual RMSE curve in

Table 5.1 and Figure 5.1, respectively. The Memory-PIVnet is abbreviated as MPN and are

labelled with the lengths of time intervals at the end. In addition to the various multi-frame
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Figure 5.1: Bilinear interpolation blending in boundary removal

Memory-PIVnet, we also show the results from PIV-LiteFlowNet-en (abbreviated as PLFN-

en) to serve as a baseline. A more detailed visualization that compares ground truths and

predictions is showed in Table 5.2.

Density ρ
Methods PLFN-en MPN-3 MPN-5 MPN-7 MPN-9

39.68 0.10625 0.07349 0.06283 0.06206 0.07788

Table 5.1: Root mean squared error (unit: pixel) by PIV-LiteFlowNet-en (PLFN-en),
Memory-PIVnet (MPN) and its variants with different time windows on forced isotropic
turbulence dataset simulated with seed density ρ = 39.68 (unit: ppf)

From the results, we can conclude that T = 5 produces the best performance. When the

time window is too small, not enough information has been provided to the network, which

causes the estimated velocity field lack of fine details. On the other hand, when too many

frames have been padded as input data, the network can be confused by potential misleading

information contained in the further-away, less-related frames. It causes overly large velocity

estimations in certain areas, which can be more clearly seen in the average endpoint error

plots (third column in Table 5.2).
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Methods Ground truth Prediction Avg. Endpoint Error

PIV-
LiteFlowNet-

en

Memory-
PIVnet-3

Memory-
PIVnet-5

Memory-
PIVnet-7

Memory-
PIVnet-9

Table 5.2: Ground truth and estimated velocity fields from PIV-LiteFlowNet-en (PLFN-en),
Memory-PIVnet (MPN) and its variants with different time windows on forced isotropic
turbulence simulated with seed density ρ = 39.68 (unit: ppf)
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5.2 Amnesia and Non-amnesia Memory Network

When training with the memory network, it is a design choice to either initialize a new

memory stage for each set of nearby frames, or keep the memory stage persistent across

the entire sequence. More specifically, suppose we are using the forced isotropic turbulence

dataset and training with a sequence of 252 particle images, with time window T = 5.

After training with the first sample block that contains images {I0, I0, I0, I1, I2}, where

the subscripts indicate the images’ indices in the sequence, the memory network can either

initialize the new memory stage when processing the next sample, which contains images

{I0, I0, I1, I2, I3}, or pass the memory stage from processing I2 to the next sample to replace

the initialization. We call these two variants amnesia and non-amnesia respectively.

Ideally, if both variants produced the same level of accuracy, the non-amnesia version

would be more attractive since it is more efficient during testing. In this section, we explore

the two variants and compare their performance. Same as the previous section, we use the

particle images generated from the forced isotropic turbulence with simulation seed density

ρ = 39.68. To rule out the possibility that amnesia or non-amnesia might be related to the

certain length of time windows, we compare the results for 3 sets of time windows. Average

RMSE and individual RMSE curve are showed in Table 5.3 and Figure 5.2 respectively.

Table 5.2 and 5.5 illustrates an example result from both approaches.

Time windows T
Methods MPN-Amnesia MPN-Non-Amnesia

3 0.07349 0.11640
5 0.06283 0.10384
7 0.06206 0.08804

Table 5.3: Root mean squared error (unit: pixel) by Memory-PIVnet-Amnesia (MPN-
Amnesia) and Memory-PIVnet-Non-Amnesia (MPN-Non-Amnesi) with different time win-
dows on forced isotropic turbulence dataset simulated with seed density ρ = 39.68 (unit:
ppf)

The results demonstrate distinctive performance difference between the amnesia and non-
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Time
window

Ground truth Amnesia Non-Amnesia

T = 3

T = 5

T = 7

Table 5.4: Ground truth and estimated velocity fields from the amnesia and non-amnesia ver-
sion of Memory-PIVnet with different time windows on forced isotropic turbulence simulated
with seed density ρ = 39.68 (unit: ppf)
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Time
window

Ground truth Amnesia Non-Amnesia

T = 3

T = 5

T = 7

Table 5.5: Ground truth and average endpoint error from the amnesia and non-amnesia ver-
sion of Memory-PIVnet with different time windows on forced isotropic turbulence simulated
with seed density ρ = 39.68 (unit: ppf)
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Figure 5.2: Bilinear interpolation blending in boundary removal

amnesia Memory-PIVnet across all time windows. And it is proficient to draw the conclusion

that the amnesia version with re-initialized memory stage would be a better pick for solving

PIV problems.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this paper, we propose a new deep learning approach for solving particle velocimetry.

Our method starts with the assumption that multiple consecutive frames of particle images

can be more helpful than image pairs. A new network structure, which combines a memory

network [11] and a multi-level flow estimation network is designed to implement and test

this idea. The input of the network is a block of nearby particle images padded along time

axis, and the output is a dense velocity field with displacement vectors at every pixel.

The proposed deep learning model is trained and evaluated with different synthetic turbu-

lence datasets from JHTDB [18]. Experiment results show that our method, Memory-PIVnet,

achieves the best performance in terms of RMSE and AEE among the current state-of-the-

art PIV solutions. A number of ablation studies, which explore how various lengths of time

windows, persistent or non-persistent internal memory stage, affect the model performance

have been conducted and discussed. We conclude that our Memory-PIVnet performs the

best with moderate length time windows (T = 5) and non-persistent memory stage.

Applying machine learning techniques on solving PIV is still at an early stage, with

few existing work to prove that it is guaranteed to work much better than the traditional

CC-based or optical flow methods. Therefore, the approach that this paper contains, which

performs over 40% better than existing methods, provides a big leap in terms of showing

that deep learning can be a promising PIV path. Memory-PIVnet is also, to our knowledge,

the first network structure that is designed from the starting point of solving PIV, instead of

building upon existing methods that more broadly work with general optical flow problems

in computer vision.

31



6.2 Future Works

Although the proposed method shows good performance on synthetic turbulence dataset, it

is undoubtedly a more complex model which requires longer training and inference time. It

is less time-efficient than other methods, especially when the target turbulence field is less

complex, which brings the potential performance gap smaller. Therefore, to work better

on the real applications, a better balance between the accuracy and efficiency should be

investigated.

When evaluating the model’s performance, the current work deploys a scalar error com-

parison (RMSE) between our model and other methods. However, such comparison could

be insufficient when evaluating other properties, such as equivariance properties, that scien-

tific measurement tools like PIV should preserve. Therefore, another potential future work

could be developing evaluation procedures that visually explore and display the success and

failures of these properties. In addition, like mentioned earlier in Section 4.3, theoretical up-

per bound of the PIV performance, which is based on the information that particle images

contain, could be another future work that help evaluate the model performance.

PIV traditionally ends with estimating the underlying velocity fields, from which other

quantities of interest can be computed, including vorticity, an important quantity in tur-

bulence studies. Predicting vorticity directly from particle images without the need to go

through full velocity fields and their numerical differentiation could be very beneficial. Tra-

ditional methods do not have the ability to do so, but learning-based algorithms enjoy the

privilege to achieve this goal by simply changing the ground truth to the vorticity. It could

also potentially do a better job than predicting velocity fields, as one degree of freedom

is dropped during training. Therefore, exploring the model’s ability to predict vorticity di-

rectly, and comparing it with the vorticity results computed through velocity from traditional

state-of-the-arts algorithms is another direction of future work.
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