
Trajectory Planning and Control for Nonholonomic Mobile Robot
among Obstacles

Zhuokai Zhao1,2, Changxin Yan1,3 and Mengdi Xu1,3

Abstract— Trajectory generation and tracking, which involve
path planning, obstacle avoidance, and nonlinear control, have
become a hot research area for the last two decades. EduMIP
is a widely-used nonholonomic mobile robot which moves
with two parallel wheels connected by a single axle. It is an
underactuated system and its dynamics is under nonholonomic
constraints. The paper focuses on both the motion planning and
trajectory tracking in 2D space with obstacles for the EduMIP
robot. The authors propose a modified RRT*-based trajectory
planning algorithm with customized heuristic function. A feed-
back linearization controller is proposed to ensure EduMIP’s
accurate trajectory tracking. Experiments have been performed
in both MATLAB and ROS Gazebo simulation environment.

I. INTRODUCTION

Mobile Inverted Pendulum (MIP), as an extension of the
inverted pendulum system, has been widely explored in
recent research topics due to its unique characteristics that
combine both the inverted pendulum system as well as a
wheeled mobile robot. EduMIP, as shown in Figure 1, is one
of the MIP systems that is capable of both self-balancing
and moving under the nonholonomic constraints. In this
paper, EduMIP was regarded solely based on its wheeled
mobile robot characteristic, while its self-balancing function
is disabled. This makes the robot be able to move and rotate
around the center of its rear-wheel axle.

Fig. 1: EduMIP robot

Many researches about trajectory planning and control
of underactuated systems have been conducted in the re-
cent years. Such systems are particularly attractive because
they have fewer control inputs than generalized coordinates,

1These authors contributed equally to this work
2Zhuokai Zhao is with Laboratory for Computational Sensing and

Robotics, Johns Hopkins University, Baltimore, MD 21210, USA
zzhao30@jhu.edu

3Changxin Yan and Mengdi Xu are with the Department of Mechan-
ical Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
cyan9@jhu.edu, mxu34@jhu.edu

which causes constraints on their dynamics. More specifi-
cally, these constraints can be represented by second-order
differential equations [2]. Various approaches from both the
planning and control perspectives have been explored. Kim,
et al. [3] developed the motion planning algorithm of an
airship using rapidly-exploring random trees (RRT). Spong
et al. [4] implemented a controller for the acrobot swing-up.
Nagarajan et al. [5] proposed an offline trajectory planning
algorithm of the ballbot, which is particular relevant to this
paper.

In this paper, a novel offline trajectory planning algo-
rithm that provides the testing EduMIP robot a sub-optimal
trajectory from start position qstart to end position qgoal is
proposed. A customized controller which utilizes feedback
linearization method is also designed to track EduMIP’s
movements.

The paper is organized with the following sections: Section
II discusses the detailed approaches in path planning and
trajectory generation; Section III describes the feedback
linearization in general as well as our customized trajectory
tracking method; Section IV presents the simulation results
in both MATLAB and ROS Gazebo environment, along with
comments on the performance; Section V discusses some
potential future work and draws the conclusion.

II. TRAJECTORY PLANNING
The program starts with taking map images in either

JPEG or PNG format, automatically analyzing the image and
recognizing the obstacles, as shown in Fig. 2. The loaded
map is then fed into the path planning algorithm.

(a) Sample map image (b) Detected obstacles

Fig. 2: Sample map with detected obstacles highlighted by
red dash-line boxes

A. Path Planing with RRT*-based algorithm
The path planning algorithm presented in this pa-

per, Customized-RRT* (C-RRT*), is built upon Rapidly-
exploring Random Trees Star (RRT*) [1] algorithm. RRT* is

an asymptotically optimal method which was an extension
of the classic Rapidly-exploring Random Trees (RRT) [6].
C-RRT* sustained the basic skeleton and the advantages
of RRT*, but was modified to fit the unique characteristics
of EduMIP by changing existing methods and adding cus-
tomized heuristic function to speed up the convergence rate.
C-RRT*, as shown in Algorithm 1, takes the map with width
xmax and height ymax, along with the starting and ending
configuration qstart , qgoal , as the input and returns a graph
that contains V and E, where V includes all the vertices
(visited nodes) and E contains all the edges (paths between
nodes). The algorithm uses several helper functions, whose
main purposes are being introduced here but explained in
detail later in this section.

SampleBiased() randomly (with bias) generates a new
node qrand = (xi,yi,θi) inside the map, where x ∈ [0,xmax],
y∈ [0,ymax], and θ ∈ [0,2π]. Near(G,qrand) finds the nearest
node in the current graph, G, to the input node qrand .
Steer(qnear,qrand) steers the path from qnear to qrand , and
stops at the returned node qnew if the distance between qnear
and qrand is larger than the user-defined maximum step size.
Line(qnear,qnew) connects a straight line between the two
input nodes. Cost(qnear) returns the cost going from the start
position qstart to qnear. Similarly, c(q1,q2) returns the cost
between two connected nodes. NearNeighbor(G,qnew,R)
finds all the nodes in G that are less than or equal to R
distance away from qnew. CollisionFree(q,qnew) checks if
the straight path between q and qnew will cause any collision,
also if there is enough free space around both q and qnew.

The general disadvantage of RRT* is that its convergence
to the optimal solution is very slow. Therefore, bias was
added as the heuristic function in C-RRT* to accelerate
the process. More specifically, function SampleBiased() is
introduced to replace the original SampleRandom() in RRT*
when randomly generating new node in each iteration. Inside
SampleBiased(), the relative position between the previous
node xprev and xgoal is first analyzed. Then the function
tends to provide higher bias toward the correct direction
when generating the new node. For example, if xprev =
(0,0), xgoal = (10,10), SampleBiased(xprev,xgoal) will have
γ chance generating a new node qrand = (x,y,θ) with x ∈
[0,10], y ∈ [0,10] and θ ∈ [0, π

2], where γ ∈ [0,1] and is pre-
defined to suit different situations. The function is explained
in more details in Algorithm 2. Note that rand(1) simply
generates a random float number between 0 and 1.

One of the most important functions is to determine
if there would be any collision between the two states.
CollisionFree(q1,q2) checks collision between q1 and q2 if
they were going to be connected by a straight line. Note
that this question could be transformed to checking whether
the connected path will have intersections with any part of
the boundaries of the obstacle. Moreover, since the goal of
our customized algorithm is to design a path for EduMIP
robot, the physical dimension of the robot also needs to
be considered. Therefore, considering that EduMIP rotates
around the center of its rear wheel axle and has a 40cm body
length, along with requiring the path to have no intersections

Algorithm 1 G = C-RRT*(qstart , qgoal)

1: while No Node ∈ V is near qgoal do
2: qrand ← SampleBiased(i);
3: qnear← Near(G = (V,E), qrand);
4: qnew← Steer(qnear, qrand);
5: if CollisionFree(qnear, qnew) then
6: V ←V ∪qnew;
7: qmin← qnear;
8: qmin← Cost(qnear)+c(Line(qnear,qnew));
9: Qneighbor← NearNeighbor(G = (V,E), qnew, R)

10: for Each q ∈ Qneighbor do
11: if CollisionFree(q, qnew) then
12: if Cost(q)+c(Line(q, qnew)) < cmin then
13: qmin← q;
14: cmin← Cost(q)+c(Line(q, qnew))
15: end if
16: end if
17: end for
18: E← E ∪{(qmin,qnew)}
19: for Each q ∈ Qneighbor do . Rewire the tree
20: if CollisionFree(qnew, q) then
21: cq = Cost(q)
22: if Cost(qnew)+c(Line(qnew, q)) < cq then
23: qparent ← Parent(q);
24: E← (E \{(qparent ,q)})∪{(qnew,q)}
25: end if
26: end if
27: end for
28: end if
29: end while
30: return G = (V,E)

with obstacle boundaries, any node that is being checked
must not collide with any obstacle in a 40cm radius in order
to be determined as collision free. The more detailed steps
are shown in Algorithm 3.

Define points (x1,y1) and (x2,y2) to be the end points
of line L1 and points (x3,y3) and (x4,y4) to be the end
points of line L2. To determine if two line segments, L1 =
Line((x1,y1),(x2,y2)) and L2 = Line((x3,y3),(x4,y4)) had
any intersections, compute

d1 = det

 1 1 1
x1 x2 x3
y1 y2 y3

 ·det

 1 1 1
x1 x2 x4
y1 y2 y4


d2 = det

 1 1 1
x3 x4 x1
y3 y4 y1

 ·det

 1 1 1
x3 x4 x2
y3 y4 y2


If both d1 ≤ 0 and d2 ≤ 0, it is determined that the two

lines have an intersection. The corresponding pseudo code is
illustrated in Algorithm 4, where q1, q2 and e1, e2 represent
the end points of the two lines respectively.

The iterations of generating and processing new nodes will
not stop until at least one node in V is within a certain
user-defined distance to the goal state and the straight path

Algorithm 2 SampleBiased(qprev,qgoal ,γ)

1: Initialize qrand with SampleRandom(qprev,qgoal);
2: γ = 10γ;
3: Initialize a length-10 zeros array with γ ones
4: Randomly pick a number, k, from the array
5: if k is 1 then . Bias has been added
6: if xgoal < xprev then
7: if ygoal < yprev then
8: xrand = xprev− rand(1) · xprev;
9: yrand = yprev− rand(1) · yprev;

10: θrand = rand(1) · π

2 +π

11: end if
12: if ygoal > yprev then
13: xrand = xprev− rand(1) · xprev;
14: yrand = yprev + rand(1) · (ymax− yprev);
15: θrand = rand(1) · π

2 + π

2
16: end if
17: end if
18: if xgoal > xprev then
19: if ygoal < yprev then
20: xrand = xprev + rand(1) · (xmax− xprev);
21: yrand = yprev− rand(1) · yprev;
22: θrand = rand(1) · π

2 + 3π

2
23: end if
24: if ygoal > yprev then
25: xrand = xprev + rand(1) · (xmax− xprev);
26: yrand = yprev + rand(1) · (ymax− yprev);
27: θrand = rand(1) · π

2
28: end if
29: end if
30: end if
31: return qrand = (xrand ,yrand ,θrand)

Algorithm 3 CollisionFree(q1, q2, Obstacles)

1: for Each Obstacle O in Obstacles do
2: for Each Boundary p in Obstacle do
3: if HasIntersection(q1, q2, p) == True then
4: if CheckSurrounding(q1, q2) == True then
5: return True;
6: end if
7: end if
8: end for
9: end for

10: return False;

between them is collision-free. In other words, once the
algorithm stops, it is guaranteed that enough nodes which
would generate a path that is capable of going from start
to the goal configuration have been obtained. Therefore, the
next step is to find the minimum-cost path from these nodes.
As shown in Algorithm 1, in every iteration, each new node
qnew will be computed a cost associated with it, as well as a
parent node qparent . It is guaranteed that the cost going from
qparent to qnew is less than any other nodes reaching qnew.

Algorithm 4 HasIntersection(q1, q2, e1, e2)

1: x1 = q1(1), x2 = q2(1), x3 = e1(1), x4 = e2(1);
2: y1 = q1(2), y2 = q2(2), y3 = e1(2), y4 = e2(2);
3: Compute d1 and d2
4: if d1 ≤ 0 && d2 ≤ 0 then
5: return True;
6: end if
7: return False;

To ensure that the path is both the shortest and as far away
from obstacle as possible, the cost function is designed as the
linear combination of both the distance between two nodes
and the distance to the nearby obstacle, which is defined as

Cost = Dist(qnear,qnew)+ρ · e(−σ ·Obstacle-Distance2)

where Dist(qnear, qnew) is the Euclidean distance between
qnear and qnew, ρ and σ are parameters that are tuned through
experiments. It is not hard to see that the goal node qnew will
have less cost if it is both closed to the starting node qnear
and far away from any nearby obstacles.

To find the least-cost path between two configurations, the
algorithm starts from the goal state and gradually moving
backward to the starting state. It mainly utilizes the cost
and parent information calculated in C-RRT* and always
chooses the current node’s parent as the previous step, until
the starting position is reached, as shown in Algorithm 5.

Algorithm 5 GeneratePath(G, qstart , qgoal)

1: while qgoal .parent != 0 do
2: qprevious← qgoal .parent;
3: Path ←{previous, Path};
4: qgoal ← qprevious;
5: end while
6: return Path;

B. Trajectory Generation with Polynomial Fit

To generate trajectory from the path planning result, two
key aspects have to be added on each position: time stamp
and the corresponding velocity. To ensure that the velocity
exists at any given position, the path has to be continuous
and smooth. Therefore, the first step is using polynomials
to fit the path generated by C-RRT* introduced in Section
II(A). For different input maps, starting and ending positions,
the path may be in very complicated shapes. Therefore,
using only one polynomial, even with higher orders, may
not be sufficient to provide an acceptable fitting result for
the whole path. Thus, the authors proposed to divide the
path into numerous segments, and to apply polynomial fit
on each segment individually. One important issue to notice
during this process is to make sure that both the positions and
derivatives between the end of previous segment and the start
of next segment are the same. This issue is solved by setting
constraints on each segment when performing polynomial fit.

Assume C-RRT* provides a path with n points,

(x1,y1),(x2,y2), . . . ,(xn,yn)

The goal is to find a k degree polynomial

P(x) = pkxk + pk−1xk−1 + · · ·+ p2x2 + p1x+ p0

that fits the n points while passing through f fix points, given
as

(x f ix1 ,y f ix1),(x f ix2 ,y f ix2), . . . ,(x f ix f ,y f ix f)

and satisfying d derivatives

{ẏ1, ẏ2, . . . , ẏd}

at points

{xder1 ,xder2 , . . . ,xderd}

The idea is to first solve the polynomial coefficients that
satisfies both the position and derivative constraints, then
modify this polynomial to make it fit for all the points
while satisfying the constraint at the same time. Suppose the
polynomial that satisfies the constraints has coefficients pc =
{pc

k, pc
k−1, pc

k−2, . . . , pc
1, pc

0}. Solve the least square solution of
equation

A · pc =

[
Yf ix
Ẏ

]
that is,

xk
f ix1

xk−1
f ix1

. . . x0
f ix1

xk
f ix2

xk−1
f ix2

. . . x0
f ix2

...
... . . .

...
xk

f ix f
xk−1

f ix f
. . . x0

f ix f

k · xk−1
der1

(k−1) · xk−2
der1

. . . 0
k · xk−1

der2
(k−1) · xk−2

der2
. . . 0

...
... . . . 0

k · xk−1
derd

(k−1) · xk−2
derd

. . . 0


· pc =



y f ix1
y f ix2

...
y f ix f

ẏ1
ẏ2
...

ẏd


where matrix A on the left hand side has f + d rows and
k+ 1 columns. By solving the least square solution for pc,
we have obtained the polynomial that would satisfy our
position and derivative constraints. The next step is to find the
compensation coefficients ps such that p= pc+ ps will make
the new polynomial, while still satisfying the constraints, also
fit for all the points. To find such ps, the y values needed,
ys, are defined as

ys
i = yi− (pc

kxk
i + pc

k−1xk−1
i + . . . , pc

1x+ pc
0)

Similar to the process solving for pc above, ps is obtained
by finding the least square solution of equation

B · ps = ys

that is 
xk

1 xk−1
1 . . . x0

1
xk

2 xk−1
2 . . . x0

2
...

... . . .
...

xk
n xk−1

n . . . x0
n

 · ps =


ys

1
ys

2
...

ys
n



By solving the least square solution of the equation,
coefficients ps = {ps

k, ps
k−1, . . . , ps

0} are obtained. Combine
both pc and ps, the final polynomial has been obtained with
coefficients

p = pc + ps = {pc
k + ps

k, pc
k−1 + ps

k−1, . . . , pc
0 + ps

0}

After the smooth path is obtained, velocities could be
assigned based on the curvature of each node. For every point
in the polynomial fit, P(i), the corresponding curvature, k(i),
is computed as

k(i) =
|P′′(i)|√

((1+P′(i)2)3)

The velocity v(i) associated with position P(i) is therefore
computed as

v(i) = min(
√

amax

k(i)
,vmax)

where vmax and amax are the maximum velocity and acceler-
ation of the EduMIP robot. Time stamps of each step is then
assigned based on the average velocities. θ are re-computed
based on the next position, that is,

θ(i) = arctan
(

Py(i+1)−Py(i)
Px(i+1)−Px(i)

)
Therefore, the final generated trajectory is completed as

T (i) = {t(i),Px(i),Py(i),θ(i),vx(i),vy(i)}

III. TRAJECTORY TRACKING CONTROL

The next step is generating the control input for EduMIP
to track the desired trajectory. For the nonholonomic car-
like EduMIP robot, we use dynamic feedback linearization
to generate the control trajectory u(t),

u(t) =
[

u1
u2

]
(1)

where u1(t) is the linear velocity and u2(t) is the angular
velocity.

The state variable for EduMIP system is ~x = (x,y,θ). The
output is ~y = (x,y). The system equations are

ẋ = u1 · cosθ

ẏ = u1 · sinθ

θ̇ = u2

To use dynamic feedback linearization, we are interested
in writing u(t) in the from of

u = a(x)+b(x)v̇(t),

where b(x) is a nonsingular matrix, and v ∈ R2 is virtual
input. By differentiating y = h(x) enough times so that all
controls appear in a linear, nonsingular relationship with the
output and its higher derivatives.

The first order derivative is

~̇y =
[

ẋ
ẏ

]
=

(
u1 · cosθ

u1 · sinθ

)

It is not possible to track the desired trajectory since only u1
could directly influence the output.

By differentiating both sides again, we have

~̇y =
(

ẍ
ÿ

)
=

(
u̇1 cosθ +u1u2 sinθ

u̇1 sinθ +u1u2 cosθ

)
=

[
cosθ −sinθ

sinθ cosθ

][
u̇1

u1u2

]
Thus, we could get the acceleration (ẍ, ÿ) by controlling

(u̇1,u2) instead of (u1,u2). The virtual input is defined as

~v =
[

ẍ
ÿ

]
Note that the system is determined only when u1 ≤ 0. We
need to define a compensator ξ = u1 which has its own
dynamics that could affect the system.

Then we have the dynamic feedback as

ξ̇ = cosθ · v1 + sinθ · v2

u2 =
−sinθ · v1 + cosθ · v2

ξ

Qualified control inputs should be able to make the error
state z asymptotically stabilized to zero where

z =
[
~y− ~yd
~̇y− ~̇yd

]
The control law in virtual input space is set as

v̈ = ~̈yd−Kp(~y− ~yd)−Kd(~̇y− ~̇yd),

where Kp and Kd are some positive constants which mean
position and derivative error gains respectively. This control
law will result in the linear closed-form error dynamics

ż = Az,

where

A =

[
0 1
−Kp −Kd

]
is a Hurwitz Matrix so that the controller is asymptotically
stable.

Note that car-like robots including EduMIP have their own
physical constraints. For example, the motors for the two
wheels equipped in EduMIP have their own velocity and
torque limits. In our case, we restrict the linear velocity to
[−0.8,0.8]m/s and angular velocity to [−0.5,0.5]rad/s. This
constraint is necessary since u1 could be near zero which will
result in quite large u2 based on the controller.

After getting the acceleration of u1, we need to iterate at
each time stamp to update u1 as

u1 = u1 + u̇1 ·∆t

IV. RESULTS

Trajectory planning results are shown in Figure 3. Figure
3a shows the path planning output from C-RRT* algorithm.
The leftmost obstacle is numbered as O1, the right three
obstacles are numbered as O2,O3 and O4 from top to bottom.
It is clear that the path in Figure 3a successfully starts
from position qstart = (0,0) and ends at the goal position
qgoal = (499,499). As the C-RRT* algorithm guarantees to
output minimum-cost path from its current sampling points,
we argue that from the number of points we have sampled,
the shown path is the optimal solution. Better solutions might
be achieved with longer sampling time, but it is a trade-off
between performance and efficiency. Since our cost function
is not only a minimization towards shortest distance, but
also a maximization of distances from obstacles, during the
process, especially when the path is passing through O1, O3
and O4, the path very well keeps as far away to the obstacles
on both sides as possible.

Figure 3b shows that the velocity assignments of the
path are also reasonable. The velocity directions very well
align with the tangent of the path. The magnitudes (lengths
of the arrows) of the velocities are also as planned larger
during straight-line segments and smaller if the path is going
through corners.

(a) Path planning output (b) Trajectory with added
time and velocity

Fig. 3: Trajectory planning results

To show the trajectory control result, we simulate the
whole system both in MATLAB and ROS-Gazebo. The
simulation in MATLAB could show the trajectory both in
workspace and control space clearly. However, the real pro-
cess involving physical constrains as well as communication
could not easily be added or verified in MATLAB. Gazebo
in ROS gives us a better choice to visualize the interaction
between our controller and EduMIP as well as EduMIP and
the environment.

The planning and control task is to control the car-like
EduMIP robot move from the start position [0,0] to target
final position [5,5] in an optimal path. The optimal path has
least cost value and will not collide with any obstacles.

A. MATLAB Trajectory Tracking Simulation

The generated trajectory data set that contains t, xd , yd ,
ẋd , ẏd , ẍd , ÿd and θ is imported first. To get more accurate
simulation, we interpolate N = 10 times between each time
gap in the desired trajectory.

Figure 4 shows the tracked result.

Fig. 4: Matlab trajectory trajectory simulation result.

Figure 5 shows the inputs versus time during the whole
tracking process.

(a) Linear velocity input u1 (b) Angular velocity input u2

Fig. 5: Inputs varying with time.

B. ROS-Gazebo-RVIZ Simulation

Gazebo is a robust 3D dynamic simulator built on ROS
which could accurately simulate robots in complex environ-
ments. It provides physics simulation at a much higher degree
of fidelity than other simulators, such as a lot of sensors and
interfaces for both users and programs. [7] Another useful
platform which could show the movement of our car-like
robot is RVIZ. It can show the position and heading of the
EduMIP and stack them into a trajectory.

We first build the ”world” environment, which contains
light source and obstacles with predefined shape and posi-
tion. Note that the top view of the environment in Gazebo
should be consistent with the map. The model of the Edu-
MIP is modified into a three-wheel cart. Two out of three
are parallel and could move clockwise and counter clock-
wise. The last passive wheel is placed on another side for
support. A controller plugin ”differential drive controller”
is added which could receive the linear and angular ve-
locity command. To get the real-time pose, we add a
”p3d base controller” plugin which could read the position
and orientation of EduMIP with respect to the fixed world
frame. Figure 6 shows the simulation environment in Gazebo.

To show the pose of EduMIP in RVIZ, we wrote a
TF broadcaster to publish the transformation between the

Fig. 6: Gazebo trajectory tracking simulation.

”world” frame and the ”car-body” fixed on EduMIP. The
whole odometry path is shown in Figure 7.

Fig. 7: Odometry path.

The communication between the trajectory tracking con-
troller and differential drive controller is by topic. The
desired trajectory is published at the time stamp according
to t got from the data set via topic ”desired states”. The
trajectory tracking controller will calculate and publish the
control command at 10Hz to topic named ”cmd vel”. One
important thing to note is that the time step of the desired
trajectory set is various but the frequency of publisher is
fixed. To synchronize publisher and the desired trajectory
time, during each time period, we use unchanged desired
point to calculate the control. Publishing the command in a
smaller fixed time step could serve as a kind of interpolation
that could help make the simulation more accurate.

The source codes are public on
https://github.com/ChangxinY/nonlinear_
control

V. CONCLUSION AND FUTURE WORK

As shown in Section IV, the ability to successfully plan
a trajectory and perform tracking control has been demon-
strated and experimentally verified.

Without an enormous amount of iterations, C-RRT* can
only provide sub-optimal path planning results, even with

https://github.com/ChangxinY/nonlinear_control
https://github.com/ChangxinY/nonlinear_control

the added heuristic function that accelerates the process.
Therefore, the authors wish to explore other path optimiza-
tion methods to locally optimize the path in the future. The
authors could use Cross-Entropy (CE), which is a gradient-
free stochastic optimization method, or Stochastic Policy
Optimization (SPO), which is, on the other hand, a gradient-
based method.

ACKNOWLEDGMENT

The authors thank course instructor Prof. Marin Kobi-
larov and teaching assistants Gowtham Garimella, Matthew
Sheckells of EN 530.678 Nonlinear Control and Planning in
Robotics.

REFERENCES

[1] Karaman, S, Frazzoli, E (2011) Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research
30(7): 846-894.

[2] J. R. Ray, Nonholonomic constraints, Am. J. Phys., no. 34, 1966, pp
406-408.

[3] J. Kim and J. P. Ostrowski, Motion planning of aerial robot using
rapidly-exploring random trees with dynamic constraints, in Proceed-
ing IEEE International Conference on Robotics and Automation, 2003,
pp 2200-2205.

[4] M.W. Spong, The swing up control problem for the Acrobot, IEEE
Control Systems Magazine, February, 1995, pp 49-55.

[5] U. Nagarajan, G. A. Kantor and R. L. Hollis, Trajectory Planning
and Control of an Underactuated Dynamically Stable Single Spherical
Wheeled Mobile Robot? in Proceeding IEEE International Conference
on Robotics and Automation, pp. 3743-3748, 2009.

[6] LaValle, S. M. 1998b. Rapidly-exploring random trees: A new tool for
path planning. Report No. TR 98-11, Computer Science Department,
Iowa State University.

[7] Gazebo Beginner Overview, http://gazebosim.org/
tutorials?tut=guided_b1&cat=.

http://gazebosim.org/tutorials?tut=guided_b1&cat=
http://gazebosim.org/tutorials?tut=guided_b1&cat=

	INTRODUCTION
	TRAJECTORY PLANNING
	Path Planing with RRT*-based algorithm
	Trajectory Generation with Polynomial Fit

	TRAJECTORY TRACKING CONTROL
	RESULTS
	MATLAB Trajectory Tracking Simulation
	ROS-Gazebo-RVIZ Simulation

	CONCLUSION AND FUTURE WORK
	References

